Regulation of Endocytic Clathrin Dynamics by Cargo Ubiquitination

Anastasia G. Henry,1 James N. Hislop,2,6 Joe Grove,5 Kurt Thorn,4 Mark Marsh,5 and Mark von Zastrow1,2,3,*

1Program in Cell Biology
2Department of Psychiatry
3Department of Cellular and Molecular Pharmacology
4Department of Biochemistry and Biophysics
University of California, San Francisco, San Francisco, CA 94158, USA
5MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
6Present address: Centre for Neuroscience, Imperial College London, London W12 ONN, UK
*Correspondence: mark.vonzastrow@ucsf.edu
http://dx.doi.org/10.1016/j.devcel.2012.08.003

SUMMARY

Some endocytic cargoes control clathrin-coated pit (CCP) maturation, but it is not known how such regulation is communicated. We found that μ-opioid neuropeptide receptors signal to their enclosing CCPs by ubiquitination. Nonubiquitinated receptors delay CCPs at an intermediate stage of maturation, after clathrin lattice assembly is complete but before membrane scission. Receptor ubiquitination relieves this inhibition, effectively triggering CCP scission and producing a receptor-containing endocytic vesicle. The ubiquitin modification that conveys this endocytosis-promoting signal is added to the receptor’s first cytoplasmic loop, catalyzed by the Smurf2 ubiquitin ligase, and coordinated with activation-dependent receptor phosphorylation and clustering through Smurf2 recruitment by the endocytic adaptor beta-arrestin. Epsin1 detects the signal at the CCP and is required for ubiquitin-promoted scission. This cargo-to-coat communication system mediates a biochemical checkpoint that ensures appropriate receptor ubiquitination for later trafficking, and it controls specific receptor loading into CCPs by sensing when a sufficient quorum is reached.

INTRODUCTION

Clathrin-coated pits (CCPs) mediate endocytosis of diverse membrane cargoes and are essential for numerous cellular processes, from the uptake of nutrients to the regulation of receptor-mediated signaling. Clathrin-dependent endocytosis involves a precisely orchestrated series of events, subject to regulation at the level of the conserved endocytic machinery and accessory proteins (Perrais and Merrifield, 2005; Toret and Drubin, 2006; Traub, 2009). The clathrin-containing lattice promotes membrane deformation and captures cargoes through interaction with various adaptors or CLASPs (Brodsky et al., 2001; Farsad and De Camilli, 2003; Itoh and De Camilli, 2006; Maldonado-Báez and Wendland, 2006; McMahon and Gallop, 2005; Traub, 2009). CCPs then undergo membrane scission, regulated in animal cells by dynamin (Taylor et al., 2012), producing endocytic vesicles. While CCP formation and function are exquisitely regulated (Kirchhausen, 2009; Taylor et al., 2011; Weinberg and Drubin, 2011), membrane cargoes packaged in the CCP have been generally viewed as inert passengers. However, it is increasingly clear that some cargoes can influence the initial formation of CCPs or their subsequent maturation (Ehrlich et al., 2004; Liu et al., 2010; Loerke et al., 2009; Mettlen et al., 2010; Puthenveedu and von Zastrow, 2006; Rust et al., 2004). An interesting, and largely unresolved, question is how such cargo-mediated control is communicated.

Cargo control is particularly interesting for signal-transducing receptors that are regulated by CCP-dependent endocytosis. There is already evidence for feedback control of the endocytic pathway at a global level by downstream signaling effectors (Le Roy and Wrana, 2005; Sorkin and von Zastrow, 2009). It is not known if activated receptors can also signal locally to the endocytic machinery, effectively exerting direct control over their enclosing CCPs. Two properties of seven-transmembrane receptors (7TMRs), the largest known family of signaling receptors, make them prime candidates for mediating such local modulation. First, many 7TMRs form oligomeric complexes and cluster nonuniformly in CCPs following ligand-induced activation, forming a 7TMR-enriched CCP subset under conditions of endogenous or near-endogenous levels of receptor and adaptor expression (Cao et al., 1998; Kasai et al., 2011; Khelashvili et al., 2010; Mundell et al., 2006; Puthenveedu and von Zastrow, 2006). Second, some 7TMRs are already known to engage actin-binding proteins after clustering in CCPs, thereby locally prolonging the surface residence time of 7TMR-containing CCPs before they internalize (Puthenveedu and von Zastrow, 2006). In addition to this apparently passive cargo-based prolongation of CCP maturation, might some receptors locally convey an active endocytosis-promoting signal? Here, we show that this is indeed the case, and identify an ubiquitin-dependent signaling mechanism that regulates endocytosis by locally controlling the surface lifetime of receptor-containing CCPs.
Figure 1. Receptor Ubiquitination Is Required for Efficient Endocytosis of MOR

(A) The ubiquitination status of wild-type or lysyl mutant MORs (F-MOR or F-MOR0cK, respectively) was examined after treatment with 10 μM DADLE before extraction and immunoprecipitation with FLAG antibody. Shown is a representative anti-HA blot of untransfected cells (293), F-MOR- (left), and F-MOR0cK-expressing cells (right).

(B and C) Lysates from cells in (A) probed with HA antibody (B) or FLAG and GAPDH antibody (C) to control for equal loading and expression.

(D) Time course of endocytosis for F-MOR and F-MOR0cK receptors after DADLE treatment for the indicated time points. The amount of surface receptors was measured using flow cytometry; n = 4.

(E) Time course of receptor recycling after 30 min DADLE treatment, agonist washout, and treatment with 10 μM of opioid antagonist naloxone for the indicated times. Shown is the recycling efficiency; n = 3.

(F and G) Flow cytometric analysis of receptor internalization after clathrin knockdown and 30 min (F) or 5 min (G) DADLE application; n = 3 and n ≥ 4, respectively.
RESULTS

Ubiquitination Controls the Rate of MOR Endocytosis by CCPs

FLAG-tagged mu opioid receptors (F-MORs) were basally ubiquitinated at a low level, and receptor ubiquitination increased over a period of minutes in response to the opioid receptor agonist DADLE (Figure 1A, left lanes). Mutating all cytoplasmic lysine residues (F-MOR0cK) prevented both basal and agonist-induced receptor ubiquitination (Figures 1A, right lanes; loading controls in Figures 1B and 1C). Blocking F-MOR internalization using K44E mutant dynamin or the dynamin inhibitor Dyngo-4a did not (data not shown), indicating that MOR ubiquitination can occur prior to endocytosis. Lysine mutation inhibited agonist-induced internalization of receptors but had no effect on the ability of receptors to recycle back to the cell surface (Figures 1D and 1E), and agonist-induced endocytosis of receptors remained both clathrin and dynamin-dependent (Figures 1F–1I). Thus, preventing MOR ubiquitination alters the rate but not mechanism of agonist-induced endocytosis.

Ubiquitination Regulates MOR Endocytosis after Receptors Cluster in CCPs

Clathrin-dependent endocytosis of 7TM receptors in animal cells is initiated by arrestin-promoted clustering of activated receptors into preexisting CCPs (Santini et al., 2002). Because ubiquitin interacts with various endocytic adaptors (Hicke and Dunn, 2003; Shih et al., 2002; Torrisi et al., 1999; Toshima et al., 2009), we expected lysine mutation to impair the clustering step but this was not the case. Total internal reflection fluorescence microscopy (TIR-FM) indicated that both F-MORs and F-MOR0cKs were diffusely distributed in the plasma membrane in the absence of agonist and clustered into diffraction-limited spots after agonist application (Figure 2A), as verified in our optical system by imaging 50 nm fluorescent beads (data not shown). The time required for clustering after agonist addition was similar for MORs and MOR0cKs (Figure S1A available online). Robust clustering was also observed using a covalent labeling strategy (Figure S1C) based on fusion of a pH-sensitive green fluorescent protein (GFP) variant (supercilpTfluorin, or SpH) whose fluorescence is quenched in endosomes (Miesenböck et al., 1998).

Diffraction-limited receptor spots observed in agonist-exposed cells were immobile and colocalized with clathrin light chain (Figure 2B, arrows), supporting their identification as receptor-containing CCPs (Puthenveedu and von Zastrow, 2006). TIR-FM analysis was restricted to the ventral plasma membrane, but immunoelectron microscopy revealed clustering of both MORs and MOR0cKs into morphologically characteristic CCPs in the dorsal plasma membrane (Figure 2C). CCPs containing both F-MOR and F-MOR0cK were productive because the clathrin coat disappeared from the TIR-FM imaging field concomitantly with receptor removal from the plasma membrane (Figure 2D; Movie S1). Further, discrete endocytic events, when summed over the imaged surface and time, were sufficient to account for net receptor loss determined by integrated receptor fluorescence (Figures S2A and S2B). We also verified that disappearance of both MOR and MOR0cK clusters was preceded by a characteristic burst of GFP-tagged dynamin-2 accumulation (not shown). Together these results indicate that both wild-type MOR and ubiquitination-defective MOR0cK undergo regulated endocytosis via the conserved CCP pathway, involving agonist-induced clustering of receptors into CCPs followed by characteristic dynamin-dependent endocytic scission.

CCPs typically undergo scission within seconds after coat assembly is complete (Ehrlich et al., 2004; Kaksonen et al., 2005; Merrifield et al., 2002; Taylor et al., 2011) but CCPs containing MORs, in contrast, were consistently found to linger in the plasma membrane. We estimated for each CCP a receptor “surface lifetime,” defined as the interval between the initial appearance of a diffraction-limited receptor spot (the frame in which its surface intensity visibly exceeded the plasma membrane surround) and its later abrupt disappearance from the TIR-FM illumination field (indicating endocytic scission). Lysine mutation of MORs markedly extended the mean surface lifetime of receptor-containing CCPs (Figure 2E) and right-shifted the respective frequency (Figure 2F) and cumulative probability (Figure 2G) distributions of events. We further verified this effect using receptors labeled covalently with SpH, to specifically visualize surface receptors without the potential complications of bound antibody (Figures S2C–S2E). Together, these results reveal an unanticipated role of 7TMR ubiquitination in limiting the surface lifetime of CCPs that mediate their endocytosis.

Kinetic Control Is Conferred by Agonist-Induced Ubiquitination of the Receptor’s First Cytoplasmic Loop

To determine if this effect is dependent on a specific site of MOR ubiquitination, we reverted lysine residues in individual cytoplasmic domains in the MOR0cK background (Figure 3A). Restoring only two lysine residues present in the first intracellular loop (MOR0cK R94,96K) fully rescued the endocytic defect, while reverting lysines in any other cytoplasmic domain did not (Figure 3B). Conversely, specifically preventing ubiquitination in the first cytoplasmic loop of MOR (MOR K94,96R) inhibited agonist-induced endocytosis (Figure 3C; Figure S2F). Mutating either of the two first-loop lysine residues individually produced an intermediate phenotype (not shown), prompting us to focus on dual lysine mutation for subsequent analysis.

To determine if first-loop lysine residues affect individual CCP dynamics, we compared mutant MORs containing or lacking only these residues (MOR0cK R94,96K or MOR K94,96R, respectively). Both clustered robustly in response to DADLE, and with indistinguishable clustering times (Figure S1B). However, CCPs containing MOR K94,96Rs exhibited markedly longer...
surface lifetime, often persisting in the plasma membrane for several minutes before endocytic scission (Figures 3D–3G). Thus, lysine residues in the MOR first cytoplasmic loop, while not required for the formation of CCPs or robust receptor clustering within them, specifically control the surface lifetime of receptor-containing CCPs before they disappear from the plasma membrane.

Ubiquitination of the same cytoplasmic lysine residues promotes topological sorting of MORs from the limiting membrane to intraluminal vesicles of late endosomes/multivesicular bodies (Hislop et al., 2011). Radioligand binding assay verified that this proteolytic effect occurs clearly after endocytosis (Figure 3H), and we established biochemically that first-loop cytoplasmic lysine residues are major sites of agonist-induced

Figure 2. MOR Ubiquitination Is Not Required for Receptor Entry into CCPs and Selectively Controls Surface Lifetime of Receptors after Clustering

(A) TIRF live-cell imaging of cells expressing F-MOR or F-MOR0cK before and after 10 min treatment with 10 μM DADLE.

(B) Cells expressing DsRed-tagged clathrin light chain (shown in fushia) and either F-MOR or F-MOR0cK (shown in teal) were imaged live. Shown is a representative image 10 min after DADLE application. Arrowheads indicate CCPs that lack receptor while arrows indicate CCPs that contain receptor; scale bar = 1 μm.

(C) Example immunoelectron micrographs of CCPs containing F-MORs (left) or F-MOR0cKs (right) labeled with FLAG antibody and protein A conjugated to 10 nm gold particles treated with agonist for 2 min. Samples were prepared as described in Experimental Procedures; scale bar = 100 nm.

(D) Representative time lapse series showing MORs cluster into preexisting CCPs. Cells were treated with agonist while imaging using TIRF-M. Frames are 3 s apart; scale bar = 500 nm.

(E) The average lifetimes that F-MOR and F-MOR0cK clusters remain on the cell surface before undergoing endocytic scission; F-MOR n = 256 clusters, ten cells; F-MOR0cK n = 318 clusters, 12 cells.

(F and G) Frequency distribution (F) and cumulative probability (G) analysis of MOR (red) and MOR0cK (light blue) cluster lifetimes. Error bars indicate standard error of the mean (SEM); p values: Student’s t test; ***p < 0.001. See also Figure S1 and Movie S1.
MOR ubiquitination (Figures 3I–3L). Together these results indicate that MORs undergo agonist-induced ubiquitination in the first cytoplasmic loop, affecting discrete events of receptor endocytosis and postendocytic sorting.

MOR Ubiquitination Locally Controls the Maturation of Receptor-Containing CCPs

To examine the kinetics of CCPs themselves, we next imaged the formation and disappearance of diffusion-limited spots labeled by DsRed-tagged clathrin light chain (Merrifield et al., 2002). In cells not expressing opioid receptors, or in receptor-expressing cells not exposed to opioid agonist, most CCPs labeled in this manner increased in fluorescence intensity over a period of ~30 s after their initial appearance and then abruptly disappeared from the evanescent field within an additional 5–10 s (Figure 4A, black line shows a representative intensity trace). This behavior is consistent with the previously described dynamics of CCPs at 37°C under conditions of near-endogenous clathrin expression (Doyon et al., 2011; Ehrlich et al., 2004; Kaksonen et al., 2005; Merrifield et al., 2002; Taylor et al., 2011). In cells expressing wild-type MORs and exposed to agonist, we saw the emergence of a subset of clathrin spots with a moderately longer surface lifetime. Mutating lysine residues present in the first cytoplasmic loop exaggerated this delay. Examining individual examples indicated that the delay occurred after clathrin intensity reached a near-maximum value (Figure 4A, blue line shows a representative intensity trace), suggesting that kinetic control is exerted by receptors after clathrin lattice assembly is complete.

Representative TIR-FM imaging series of the range of behaviors observed, from cells expressing each mutant receptor construct examined, are shown in Figure 4B. We verified these observations quantitatively across multiple examples and experiments by determining a mean CCP surface lifetime (Figure 4C). Frequency distribution and cumulative probability plots also revealed a pronounced rightward shift in the distribution of clathrin surface lifetimes that was dependent both on the receptor construct expressed and the presence of agonist (Figures 4D and 4E). A similar effect was evident when the same image series was analyzed using a previously described (Jaqaman et al., 2008) computer algorithm (Figures S3A and S3B).

Because various 7TMRs cluster nonuniformly within the CCP population (Cao et al., 1998; Mundell et al., 2006; Puthenveedu and von Zastrow, 2006), we next asked if the subset of CCPs with prolonged surface lifetime corresponded to those containing activated MORs. To do so, we used dual-label TIR-FM to analyze the CCP lifetime of all diffusion-limited clathrin spots (representing the overall population of CCPs) and then separated the individual determinations according to the presence or absence of MOR K94,96R fluorescence. Increased mean surface lifetime was observed only for the receptor-containing subset (Figure 4F), and the rightward shift in the distribution of surface lifetimes fully segregated with this subset (Figures 4G and 4H). These results suggest that activated opioid receptors locally control CCPs and do so in a manner determined by the receptor’s specific ubiquitination status. In essence, nonubiquitinated MORs act as a “brake” to stall receptor-containing CCPs, while ubiquitination of the receptor’s first cytoplasmic loop functions as a “brake release” to trigger subsequent endocytic scission.

This interpretation predicts that the surface lifetime of another cargo, copackaged with ubiquitin-defective opioid receptors, would also be affected. To test this, we carried out dual-label TIR-FM imaging of mutant opioid receptors together with SpH-tagged transferrin receptors (SpH-TfRs) that cluster constitutively in CCPs. While many SpH-TfR spots exhibited relatively short surface lifetimes, a subset persisted in the plasma membrane for an extended time period before abruptly disappearing from the evanescent field; precisely these spots colocalized with F-MOR K94,96R (Figures 4I–4K).

Ubiquitination in the First Cytoplasmic Loop Controls MOR Loading into CCPs

First-loop mutations did not detectably affect the peak value of clathrin light chain fluorescence measured before CCP scission visualized by TIR-FM (Figures 5A–5C). However, a pronounced difference was observed when the same approach was used to quantify the fluorescence of receptors. Preventing MOR ubiquitination in the first loop increased mean receptor loading of CCPs estimated at the time of scission (Figure 5D), and produced an obvious right shift in the distribution of individual receptor intensity values (Figures 5E and 5F). We noted a detectable but smaller (30%–50%) increase in the coefficient of variation of the intensity distribution (legend to Figure 5E), suggesting that preventing MOR ubiquitination also increases variability in the degree of receptor loading into individual CCPs.

These observations were further supported by detailed analysis of the relationship between ubiquitin-dependent control of CCP surface lifetime and cargo loading. When ubiquitination of the first cytoplasmic loop was allowed to occur (i.e., wild-type MOR or MOR0cK R94,96K), CCP lifetimes were uniformly short and cargo loading (receptor fluorescence intensity measured at individual CCPs) was relatively tightly clustered (Figures 5G and 5H). However, when ubiquitination was prevented (MOR K94,96R), there was an extended distribution of clathrin lifetimes that positively correlated with cargo load (Figures 5I and 5J, correlation coefficient = 0.69). This suggests that by controlling the surface lifetime of individual CCPs, ubiquitination of MOR’s first cytoplasmic loop effectively limits the amount of receptor cargo accumulated into CCPs by the time of endocytic scission.

Ubiquitin Is Added to Receptors by Activation and Phosphorylation-Dependent Recruitment of Smurf2

Having established first-loop ubiquitination as the critical biochemical information conferring local control of CCP lifetime, we next investigated the mechanism responsible for adding this signal. We started by identifying the relevant ubiquitin ligase. To do so, we screened for effects of catalytic inactivation, focusing on HECT domain ligases related to Rsp5/Nedd4 because of their widespread endocytic functions and on a subset of RING domain ligases shown previously to function in the endocytic pathway (Hislop and von Zastrow, 2011; Staub and Rotin, 2006). The HECT domain ubiquitin ligase Smurf2 emerged as a strong candidate (Figure 6A), which we pursued further because its effects were highly cargo specific and evident using both mutational inactivation (Figure 6B) and small interfering RNA (siRNA)-mediated knockdown (Figures 6C and 6F).
Figure 3. Lysine 94 and 96 in the First Intracellular Loop of MOR Control the Surface Lifetime of Receptors and Are the Major Sites of Agonist-Induced MOR Ubiquitination

(A) Schematic of MOR indicating the positions of the eight cytoplasmic lysine residues.

(B) Flow cytometric analysis of the internalization of mutant receptors with no cytoplasmic lysine residues (MOR0cK) and with the selective return of lysine residues in the different intracellular domains of the receptor corresponding to the sites shown in (A). Cells were treated with 10 μM DADLE for 30 min; n = 3.
Smurf2 knockdown inhibited internalization of MORs only when lysine residues were present in the first loop, whereas it produced no (additional) inhibitory effect on MORs lacking lysine residues in the first loop (Figures 6D and 6E). Finally, we verified that specifically disrupting Smurf2 catalytic activity inhibited agonist-induced ubiquitination of MORs (Figures 6G and 6H). These observations provide independent lines of genetic and biochemical evidence that Smurf2 regulates MOR endocytosis by adding ubiquitin to the first cytoplasmic loop.

We next asked how Smurf2-mediated ubiquitination of MORs is coordinated with agonist-induced receptor activation and clustering. Smurf2 associated with Arrestin3 (beta-arrestin2) in cell extracts (Figure 6I), and Arrestin3 is already known to undergo agonist-induced recruitment to MORs (Cen et al., 2001; Johnson et al., 2006; Zhang et al., 1998). This suggested that Arrestin3, in addition to functioning as an endocytic adaptor for MORs, might also function as a scaffold for recruiting Smurf2 to agonist-activated MORs. Supporting this hypothesis, both Arrestin3-GFP and Smurf2-GFP fluorescence rapidly increased at the plasma membrane after receptor activation, with Smurf2 recruitment following that of Arrestin3 (Figure 6J, green and purple lines, respectively). Further, Smurf2 accumulated both diffusely and in spots in the plasma membrane (Figure S4) reminiscent of Arrestin3 localization shown previously (Puthevened and von Zastrow, 2006), and recruitment of both proteins began before detectable receptor clustering in CCPs (compare Figure 6J with Figures S1A and S1C). Beta-arrestins associate with MORs following agonist-induced phosphorylation of the receptor’s cytoplasmic tail (Groer et al., 2011; Johnson et al., 2006; Zhang et al., 1998), and the specific phosphorylation sites required for this recruitment were recently defined (Lau et al., 2011). Mutating only these residues (F-MOR 375AAANA379) blocked agonist-induced ubiquitination of MORs (Figures 6K and 6L). Further, knockdown of Smurf2 effectively phenocopied lysyl-mutation of MORs, as indicated by a significant increase in mean receptor surface lifetime (Figure 7A) and a pronounced right shift in the frequency distribution (Figures 7B and 7C). Additionally, expression of GFP-tagged, catalytically inactive mutant Smurf2 resulted in ∼2-fold increase in MOR surface lifetime compared to expression of GFP alone (data not shown), similar to the effect of Smurf2 knockdown. These results suggest that Smurf2-mediated ubiquitination of MORs is controlled, and coordinated with receptor clustering in CCPs, through arrestin-mediated recruitment.

The Ubiquitin Signal Is Detected at CCPs by Epsin1

To determine how the ubiquitin-encoded signal is detected to transduce local CCP control, we screened CCP-associated proteins that are known to bind ubiquitin. Obvious candidates are epsins, a conserved family of ubiquitin-interacting motif (UIM)-containing proteins that assemble with CCPs (Chen et al., 1998; Kazazic et al., 2009; Shih et al., 2002; Wendland, 2002), and whose knockdown or overexpression can alter CCP dynamics (Mettilen et al., 2009) or endocytic function (Chen et al., 2011; Rosenthal et al., 1999; Sorkina et al., 2006; Sugiyama et al., 2005). siRNA duplexes targeting Epsin2 did not detectably affect MOR internalization (not shown) but Epsin1 depletion caused a significant inhibition (Figure S5A). We initially rejected this candidate because its knockdown (Figures S5B and S5C) and overexpression (Figures S5D and S5E) also affected lysyl mutant MORs, consistent with these manipulations of overall Epsin1 abundance causing a general impairment of endocytosis. We later reconsidered this candidate because deleting only the tandem UIMs (Epsin1ΔUIM), which disrupts Epsin1 binding to ubiquitinated proteins (Sugiyama et al., 2005), did not detectably change Epsin1 distribution or assembly with CCPs (Figures S5F and S5G) and affected MOR endocytosis in a ubiquitination-specific manner: Epsin1ΔUIM inhibited internalization of the wild-type MOR (Figure 7D) but had no detectable effect on internalization of the lysyl mutant MOR0cK, which slows CCP maturation but is unable to undergo the critical first-loop ubiquitination (Figure 7E), or of the DOR that does not delay CCP maturation in the first place (Figure 7F). Further supporting this conclusion, Epsin1ΔUIM prolonged surface lifetime of CCPs containing wild-type MORs (Figure 7G–7I) without impairing receptor clustering in CCPs initiated by agonist-induced receptor activation (Figure S1E). These results experimentally isolate a specific function of Epsin1, through its UIMs, in recognizing appropriately ubiquitinated MORs and triggering endocytic scission of the CCPs containing them.

DISCUSSION

The present results show that a signaling receptor that is itself regulated by CCP-mediated endocytosis can, conversely, exert active and local cargo-dependent control over the endocytic process. We observed that MORs prolong the surface lifetime of receptor-containing CCPs after their formation and initial

(C) The percentage of receptor internalization was measured as in (B) in cells expressing wild-type MOR, MOR K94,96R, and MOR0cK; n = 3.

(D) Representative image sequence of clusters of mutant receptors with only the first intracellular loop lysines present (MOR0cK R94,96K) or only missing these residues (F-MOR 375AAANA379) blocked agonist-induced ubiquitination of MORs (Figures 6K and 6L). Further, knockdown of Smurf2 effectively phenocopied lysyl-mutation of MORs, as indicated by a significant increase in mean receptor surface lifetime (Figure 7A) and a pronounced right shift in the frequency distribution (Figures 7B and 7C). Additionally, expression of GFP-tagged, catalytically inactive mutant Smurf2 resulted in ∼2-fold increase in MOR surface lifetime compared to expression of GFP alone (data not shown), similar to the effect of Smurf2 knockdown. These results suggest that Smurf2-mediated ubiquitination of MORs is controlled, and coordinated with receptor clustering in CCPs, through arrestin-mediated recruitment.

The Ubiquitin Signal Is Detected at CCPs by Epsin1

To determine how the ubiquitin-encoded signal is detected to transduce local CCP control, we screened CCP-associated proteins that are known to bind ubiquitin. Obvious candidates are epsins, a conserved family of ubiquitin-interacting motif (UIM)-containing proteins that assemble with CCPs (Chen et al., 1998; Kazazic et al., 2009; Shih et al., 2002; Wendland, 2002), and whose knockdown or overexpression can alter CCP dynamics (Mettilen et al., 2009) or endocytic function (Chen et al., 2011; Rosenthal et al., 1999; Sorkina et al., 2006; Sugiyama et al., 2005). siRNA duplexes targeting Epsin2 did not detectably affect MOR internalization (not shown) but Epsin1 depletion caused a significant inhibition (Figure S5A). We initially rejected this candidate because its knockdown (Figures S5B and S5C) and overexpression (Figures S5D and S5E) also affected lysyl mutant MORs, consistent with these manipulations of overall Epsin1 abundance causing a general impairment of endocytosis. We later reconsidered this candidate because deleting only the tandem UIMs (Epsin1ΔUIM), which disrupts Epsin1 binding to ubiquitinated proteins (Sugiyama et al., 2005), did not detectably change Epsin1 distribution or assembly with CCPs (Figures S5F and S5G) and affected MOR endocytosis in a ubiquitination-specific manner: Epsin1ΔUIM inhibited internalization of the wild-type MOR (Figure 7D) but had no detectable effect on internalization of the lysyl mutant MOR0cK, which slows CCP maturation but is unable to undergo the critical first-loop ubiquitination (Figure 7E), or of the DOR that does not delay CCP maturation in the first place (Figure 7F). Further supporting this conclusion, Epsin1ΔUIM prolonged surface lifetime of CCPs containing wild-type MORs (Figure 7G–7I) without impairing receptor clustering in CCPs initiated by agonist-induced receptor activation (Figure S1E). These results experimentally isolate a specific function of Epsin1, through its UIMs, in recognizing appropriately ubiquitinated MORs and triggering endocytic scission of the CCPs containing them.

DISCUSSION

The present results show that a signaling receptor that is itself regulated by CCP-mediated endocytosis can, conversely, exert active and local cargo-dependent control over the endocytic process. We observed that MORs prolong the surface lifetime of receptor-containing CCPs after their formation and initial
cargo accumulation, but before the occurrence of dynamin-dependent scission, verifying and extending the observation that some 7TMRs exert a "brake" function on the maturation of their enclosing CCPs (Puthenveedu and von Zastrow, 2006). Ubiquitination of MORs in the first cytoplasmic loop conveys an active biochemical signal that effectively counteracts this inhibitory effect, allowing specific receptor ubiquitination to act as an endocytic "brake release." The present results add to the accumulating evidence supporting cargo-mediated regulation at various stages in the conserved CCP pathway (Ehrlich

Figure 4. MOR Ubiquitination Decreases the Surface Lifetime of Clathrin and Affects Other Cargo in MOR-Containing CCPs
(A) Clathrin fluorescence traces of representative short (black) and long-lived (blue) CCPs in a MOR K94,96R-expressing cell imaged in the presence of agonist. Traces were aligned (t = 0 denotes the end of the ascending phase).
(B) Representative image sequences of CCPs from Control, + MOR, +MORock R94,96K, or +MOR K94,96R cells treated with agonist while imaging using TIRF-M. Frames are 9 s apart; scale bar = 500 nm.
(C) The average clathrin lifetimes before and after agonist treatment in cells expressing DsRed-tagged clathrin light chain and pCDNA 3.0 (Control), MOR, MORock R94,96K, or MOR K94,96R. Before agonist treatment: Control (black) n = 207 clusters, five cells; +MOR (red) n = 308 clusters, five cells; +MORock R94,96K (pink) n = 135 clusters, five cells, +MOR K94,96R (blue) n = 302 clusters, five cells. After agonist treatment: Control n = 550 clusters, five cells; +MOR n = 607 clusters, five cells; +MORock R94,96K n = 542 clusters, five cells, +MOR K94,96R n = 592 clusters, five cells.
(D and E) Frequency distribution (D) and cumulative probability (E) analysis of clathrin surface lifetimes.
(F) The average clathrin lifetimes in MOR K94,96R-expressing cells treated with agonist, separated into populations based on whether they lack (--MOR K94,96R) or contain (+MOR K94,96R) receptors measured within the same five cells. --MOR K94,96R n = 413 clusters; +MOR K94,96R n = 206 clusters.
(G and H) Frequency distribution (G) and cumulative probability (H) analysis of clathrin cluster lifetimes that either lack (--MOR K94,96R, black) or contain (+MOR K94,96R, blue) MOR K94,96R receptors.
(I) The average SpH-Transferrin receptor cluster lifetimes in MOR K94,96R-expressing cells treated with DADLE, separated by whether they lack (--MOR K94,96R) or contain (+MOR K94,96R) mutant receptors. --MOR K94,96R n = 245 clusters, five cells; +MOR K94,96R n = 203 clusters, five cells.
(J and K) Frequency distribution (J) and cumulative probability (K) analysis of the lifetimes of transferrin receptor clusters that either lack (--MOR K94,96R, black) or contain (+MOR K94,96R, blue) MOR K94,96R receptors.

Error bars indicate standard error of the mean (SEM). p values: one-way ANOVA, Bonferroni multiple comparison test; **p < 0.001. See also Figure S3.
et al., 2004; Liu et al., 2010; Loerke et al., 2009; Mettlen et al., 2010; Puthenveedu and von Zastrow, 2006; Santini et al., 2002), and reveal an additional level of control through local signaling based on cargo ubiquitination.

Ubiquitination of endocytic cargoes is well known to promote the initial accumulation in CCPs through ubiquitin-binding endocytic adaptors (Hicke and Dunn, 2003; Maldonado-Báez and Wendland, 2006; Shih et al., 2002; Torrisi et al., 1999; Toshima et al., 2009), and to promote later multivesicular body/lysosome sorting of endocytic cargo through interactions with the ESCRT machinery (Raiborg and Stenmark, 2009; Saksena et al., 2007; Shields and Piper, 2011). The present results identify a discrete function of ubiquitin as a biochemical signal that actively controls CCP maturation. Our results add to accumulating evidence for additional endocytic functions of ubiquitin (Jiang and Sorkin, 2003; Reider and Wendland, 2011) and, taken in context with recent evidence for ubiquitin-dependent control in the biosynthetic pathway (Jin et al., 2012), suggest a potentially widespread role of ubiquitin as a cargo-specific regulator of coat protein dynamics.

Ubiquitin is added to the receptor by Arrestin3 -dependent recruitment of the Smurf2 ubiquitin ligase, promoted by specific phosphorylation of the MOR cytoplasmic tail. This mechanism for regulating receptor ubiquitination intrinsically assures close

Figure 5. MOR Ubiquitination Controls the Amount of Receptor Loaded into Individual CCPs.
(A) The average, normalized clathrin fluorescence intensities in cells expressing clathrin light chain and MOR, MOR0cK R94,96K, or MOR K94,96R were measured, shown as a fold increase in fluorescence over background. MOR n = 319 clusters, seven cells; MOR0cK R94,96K n = 311 clusters, five cells; and MOR K94,96R n = 335 clusters, seven cells.
(B and C) Frequency distribution (B) and cumulative probability curves (C) of clathrin intensities in MOR (red), MOR0cK R94,96K-expressing (pink), and MOR K94,96R-expressing (blue) cells.
(D) The average, normalized receptor cluster intensities in cells expressing MOR, MOR0cK R94,96K, or MOR K94,96R treated with agonist. MOR n = 301 clusters, seven cells; MOR0cK R94,96K n = 263 clusters, eight cells; and MOR K94,96R n = 292 clusters, seven cells.
(E) Frequency distribution of receptor clusters with the specified intensities (bars) was fitted to a Gaussian curve (lines). For MOR, R² = 0.9890, d.f. = 16, Sy.x = 1.257, and coefficient of variation (CV) = 0.131; for MOR0cK R94,96K R² = 0.9958, d.f. = 16, Sy.x = 0.7041, and CV = 0.155, for MOR K94,96R, R² = 0.9535, d.f. = 16, Sy.x = 1.501 and CV = 0.215.
(F) Cumulative probability curves for intensity measurements of wild-type or mutant receptors.
(G–I) Receptor intensities were plotted against lifetimes for individual clusters to assess any correlation between intensity and receptor lifetime for MOR (G), MOR0cK R94,96K (H), and MOR K94,96R (I). MOR correlation coefficient = 0.2051 and R² = 0.04207; MOR0cK R94,96K correlation coefficient = 0.1486 and R² = 0.02209; MOR K94,96R correlation coefficient = 0.6885 and R² = 0.4740.
(J) The compiled results are shown at the same scale. Error bars correspond to SEM and p values: one-way ANOVA, Bonferroni multiple comparison test; ***p < 0.001.
coordination of ubiquitination with receptor activation and clustering into CCPs (Figure 7J). We are not aware of previous evidence for such a biochemical encoding mechanism for opioid receptors, or for Smurf2 specifically, but regulation by arrestin-mediated recruitment of ubiquitin ligases is emerging as a repeated theme in cell biology (Bhandari et al., 2007; Shenoy et al., 2001, 2008). The regulatory effect of receptor ubiquitination on CCP surface lifetime requires epsin1, and specifically its UIMs, identifying a discrete function of epsin in sensing and transducing the endocytosis-promoting activity of this local biochemical signal.

Ubiquitin-dependent endocytic control appears to mediate a biochemical “checkpoint” that delays endocytosis until appropriate ubiquitination (Hislop et al., 2011) of MORs is achieved to facilitate later trafficking (Figure 7F, red bar). We also found that first-loop ubiquitination affects MOR density in individual CCPs at the time of endocytic scission (Figures 5D–5J), suggesting that it represents a simple biochemical mechanism to estimate
Figure 7. Smurf-2 Mediated Ubiquitination of MOR Controls Receptor Surface Lifetime

(A) The average lifetimes of MOR clusters were measured in control or Smurf2 siRNA-expressing cells after agonist treatment; Control n = 258 clusters, nine cells; Smurf2 n = 264 clusters, 11 cells.

(B and C) Frequency distribution (B) and cumulative probability (C) analysis of MOR cluster lifetimes in control (white) or Smurf2 (purple) siRNA-transfected cells.

(D–F) MOR (D, n = 5), MOR0cK (E, n = 4), or DOR (F, n = 4) internalization after 30 min DADLE was measured in cells expressing receptors and GFP or GFP-Epsin1 ΔUIM. (G) The average lifetime measurements of MOR clusters in GFP or GFP-Epsin1 ΔUIM-expressing cells after agonist treatment; GFP n = 272 clusters, nine cells; GFP-Epsin1 ΔUIM n = 290 clusters, nine cells.

(H and I) Frequency distribution (H) and cumulative probability (I) analysis of MOR surface lifetimes in GFP- (white) or GFP-Epsin1 ΔUIM-expressing (orange) cells.

Error bars correspond to SEM and p values: Student’s t test or one-way ANOVA, Bonferroni multiple comparison test; *p < 0.05; ***p < 0.001.
local concentration of a specific endocytic cargo and control CCP surface lifetime accordingly (Figure 7K, red and green boxes). The latter effect is reminiscent of “quorum sensing” (Miller and Bassler, 2001) described initially in bacterial ecology (Fuqua et al., 1994; Nealson et al., 1970), except that the presently described density-measurement system is based on local accumulation of covalently attached ubiquitin rather than of a secreted factor (Fuqua and Greenberg, 1998; Hastings and Greenberg, 1999; Jayaraman and Wood, 2008). Thus, we propose that the presently identified cargo-to-coat communication system functions, at the systems level, as a means to fundamentally and locally tailor the endocytic pathway to the needs of specialized membrane cargoes such as signaling receptors.

EXPERIMENTAL PROCEDURES

Expression Constructs, Reagents, and Statistical Analysis
Expression constructs and reagents, as well as statistical methods, are described in Supplemental Experimental Procedures. Other methods are summarized below, with additional detail included in Supplemental Experimental Procedures.

Flow Cytometric Analysis of Endocytosis
The flow cytometric assay was carried out as previously described (Hislop et al., 2011; Tsao and von Zastrow, 2000).

TIR-FM Imaging
TIR-FM was performed at 37°C using a Nikon TE-2000E inverted microscope with a 60× 1.46 NA TIRF objective, using through-the-objective illumination and 488 nm Argon-ion laser (Melles Griot) and 543 nm HeNe laser (Spectra Physics) as light sources. An IXon (Andor) camera was used to acquire image sequences, controlled by Andor iQ software.

Immunoelectron Microscopy of Plasma Membrane Sheets
Cell surface receptor was detected by sequential incubation with 10 μg/ml rabbit anti-FLAG IgG (Sigma-Aldrich, MO, USA) and protein A conjugated to 10 nm gold particles, after which the cells were washed in HEPES buffer (25 mM HEPES, 25 mM KCl, and 2.5 mM Mg acetate [pH 7.0]). Plasma membrane sheets were prepared using a previously described “rip-off” technique (Sanan and Anderson, 1991; Signoret et al., 2005). Images were acquired using a Tecnai G2 Spirit transmission EM (FEI, Eindhoven, the Netherlands) fitted with a Morada 11 MegaPixel TEM camera (Olympus Soft Imaging Solutions, Münster, Germany).

Image Analysis
Image analysis was performed using ImageJ software (Wayne Rasband, NIH). For surface lifetime measurements, the time between the appearance and disappearance of clusters was measured as previously described (Puthenveedu and von Zastrow, 2006). For cluster intensity measurements, the mean intensity value of clusters immediately prior to endocytic scission and of an identically sized background region of the cell at that same frame was quantified. Fluorescence values of clusters were divided by those of background regions and expressed as “Fold over background” values. For change in intensity over time measurements, regions of interest were drawn around individual cells and the change in integrated intensity was measured and background-corrected. These values were normalized to the intensity of the cell immediately prior to agonist treatment and are represented as “% of initial fluorescence” values.

Analysis of Receptor Degradation by Radioligand Binding
The amount of receptor remaining after prolonged agonist treatment was measured by radioligand binding, as previously described (Hislop et al., 2009; Tsao and von Zastrow, 2000). Specific binding values are shown, measured as total binding minus the nonspecific binding at each time point and expressed as the percentage of the binding in untreated cells.

Detection of Ubiquitination by Western Blot Analysis
Cells stably expressing FLAG-tagged receptors were treated with agonist for the indicated time points and prepared for western blot analysis to detect receptor ubiquitination as previously described (Hislop et al., 2011). Denatometric analysis of band intensities from unsaturated immunoblots were analyzed and quantified by densitometry using FluorChem 2.0 software (Alpha Innotech).

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures, two movies, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.devcel.2012.08.003.

ACKNOWLEDGMENTS

We thank Laurant Coscosy, Brian Sullivan, Adriano Marchese, Christien J. Merrifield, Wolfhard Almers, Wes Sunquist, Phil Robinson, and Michael Tanowitz for providing reagents. We would also like to thank Alexander Sorkin, Guillermo Yudowski, Manoj Puthenveedu, Paul Temkin, William Dowdle, David Morgan, Keith Mostov, Orion Weiner, Frances Brodsky, and Henry Bourne for useful comments. This work was supported by grants from the NIH (DA010711 and DA012864 to M.v.Z.), and A.G.H. is a recipient of a predoctoral fellowship from the US National Science Foundation. J.G. and M.M. are supported by UK MRC funding to the Cell Biology Unit.

Received: March 1, 2011
Revised: June 21, 2012
Accepted: August 4, 2012
Published online: August 30, 2012

REFERENCES

(J) Model for the role of posttranslational modifications in MOR endocytosis. After agonist addition, receptors undergo phosphorylation that recruits Arrestin3 and Smurf2 to activated receptors and promotes entry of receptors into CCPs. Smurf2 ubiquitinates MORs, modulating the lifetime of receptor-containing CCPs.

(K) Model for the role of receptor-mediated control of CCPs. Receptors are recruited to CCPs via interactions with Arrestin3 (1), where they effectively stall the CCP (2) until receptors undergo Smurf2-mediated ubiquitination (3). This prompts endocytic scission (4) and functions as both a quorum sensor for cargo load and as a checkpoint for later receptor destruction (5).

See also Figures S1 and S5.

Supplemental Information

Regulation of Endocytic Clathrin Dynamics by Cargo Ubiquitination

Anastasia G. Henry, James N. Hislop, Joe Grove, Kurt Thorn, Mark Marsh, and Mark von Zastrow

Inventory of Supplemental Information

Supplemental Figures

- Figure S1. Compiled analysis of the time until appearance of receptor-containing CCPs under different conditions that affect receptor ubiquitination, related to Figure 2, 3, and 7.

- Figure S2. The role of receptor ubiquitination on MOR endocytosis measured using SpH-tagged receptors imaged in TIRF-M, related to Figure 2.

- Figure S3. Automated analysis of overall clathrin lifetimes in receptor-expressing cells, related to Figure 4.

- Figure S4. Smurf2 localizes both diffusely and in CCPs after agonist-induced recruitment, related to Figure 6.

- Figure S5. Overexpression or knockdown of Epsin1 inhibits MOR endocytosis irrespective of lysyl-mutation, related to Figure 7.

Supplemental Experimental Procedures

- Expression Constructs and other reagents

- TIR-FM Imaging

- Immunoelectron microscopy of plasma membrane sheets
- Image Analysis
- Detection of ubiquitination by Western blot analysis
- Automated CCP lifetime analysis
- Statistical analysis

Supplemental References
Figure S3

A - n=# of cells

B - n=# of CCPs

Average clathrin lifetime (sec)

Control MOR K94,96R MOR0cK R94,96K

*** ** *
Figure S4

GFP-Smurf2
Figure S5

A

B

C

D

E

F

G

% Internalization

Control Epsin1-2 Epsin1-3 Epsin1-4 Clathrin

% Internalization

Control Epsin1-2 Epsin1-3 Epsin1-4 CHC17

IB: anti-Epsin1

IB: anti-GAPDH

% Internalization

GFP GFP-Epsin1

% Internalization

GFP GFP-Epsin1

GFP-Epsin1

GFP-Epsin1ΔUIM

Bar scale
Supplemental Figure Legends

Figure S1. Compiled analysis of the time until appearance of receptor-containing CCPs under different conditions that affect receptor ubiquitination. The time until cluster appearance after agonist addition is measured for F-MOR and F-MOR0cK (A), F-MOR0cK R94,96K and F-MOR K94,96R (B), SpH-MOR and SpH-MOR0cK (C), control or Smurf2 siRNA-transfected F-MOR (D), and GFP- or GFP-Epsin1 Δ UIMs-transfected (E) receptor clusters. The mean time until cluster appearance is depicted by a line for each condition analyzed. P-values: student’s t-test; n.s., not significant; ***, p<0.001.

Figure S2. The role of receptor ubiquitination on MOR endocytosis measured using SpH-tagged receptors imaged in TIRF-M. (A and B) The total decrease in receptor integrated fluorescence over time approximates the total fluorescence contained within receptor clusters. The total decrease in receptor fluorescence is shown for a representative F-MOR expressing cell treated with agonist at t=0 (A). The total fluorescence of all receptor clusters is measured for the same cell as in E, and is of a similar magnitude to the loss in receptor fluorescence over time (B). (C) The average surface lifetimes of SpH-MOR and SpH-MOR0cK receptor clusters after agonist treatment; MOR n=290 clusters, 8 cells; MOR0cK n=271 clusters, 8 cells. (D) Frequency distribution analysis of SpH-MOR (red) and SpH-MOR0cK (blue) receptor clusters with the specified lifetimes on the cell surface. (E) Cumulative probability analysis of receptor cluster lifetimes. (F) The normalized integrated surface fluorescence of SpH-MOR (red), SpH-MOR0cK(blue), and SpH-MOR K94,96R (black) expressing cells measured every 3 s after agonist addition at time=0 (n=13 cells). The integrated fluorescence value at t=0 is defined as 100%. Error bars indicate standard error of the mean (SEM). P-values: student’s t-test; ***, p<0.001.
Figure S3. Automated analysis of overall clathrin lifetimes in receptor-expressing cells. (A) The average clathrin lifetimes prior to agonist treatment in cells transiently expressing DsRed-tagged clathrin light chain and pCDNA 3.0 (Control), n=8 cells; F-MOR K94,96R (+ MOR K94,96), n=7 cells; or F-MOR0cK R94,96K (+ MOR0cK R94,96K), n=7 cells. (B) The same average clathrin lifetimes from A, where n corresponds to the number of total clusters analyzed. Control n=14013; + MOR K94,96R n=7073; + F-MOR0cK R94,96K n=3629. Error bars indicate standard error of the mean (SEM). P-values: one-way ANOVA, Bonferroni multiple comparison test; *, p<0.05; **, p<0.01; ***, p<0.001.

Figure S4. Smurf2 localizes both diffusely and in CCPs after agonist-induced recruitment. Cells expressing GFP-tagged Smurf2 and F-MOR were imaged live using TIR-FM. Shown is a representative example showing the localization of GFP-Smurf2 in cells treated with agonist for five minutes. Scale bar = 5 μm.

Figure S5. Overexpression or knockdown of Epsin1 inhibits MOR endocytosis irrespective of lysyl-mutation. (A and B) Cells stably-expressing F-MOR (A) or F-MOR0cK (B) were transiently transfected with siRNA duplexes against Epsin1 or CHC17 (as a control) and the percentage of MOR (n≥9) or MOR0cK (n≥4) internalization after 30 minutes agonist treatment was measured using flow cytometric analysis. (C) Verification of Epsin1 knockdown by immunoblotting with an antibody against endogenous Epsin1. Shown is a representative image of three experiments, and equal loading was confirmed by immunoblot detecting GAPDH. (D and E) Cells stably-expressing F-MOR (D) or F-MOR0cK (E) were transiently transfected with either GFP alone or GFP-tagged Epsin1 and the percentage of MOR (n=5) or MOR0cK (n=4) internalization after 30 minutes agonist treatment was measured using flow cytometry. Results were averaged across multiple experiments (shown are mean and SEM). P-values: one-way
ANOVA, Bonferroni multiple comparison test; *, p<0.05; **, p<0.01, ***, p<0.001. (F and G) Cells expressing GFP-tagged Epsin1 and Epsin1ΔUIM and F-MOR were imaged live using TIR-FM. Shown are representative examples showing the localization of GFP-Epsin1 (F) and GFP–Epsin1 ΔUIM (G). Scale bar = 5 μm.
Supplemental Experimental Procedures

Expression constructs and other reagents

The FLAG-tagged MOR construct, DsRed-tagged clathrin light chain, and inactive mutant versions of the E3 ligases Cbl, Mdm2, AIP4, Nedd 4.1 and 4.2, Nedd L1 and 2, WWP1 and 2, and Smurf1 and 2 were previously described (Hislop et al., 2009; Merrifield et al., 2002; Tanowitz and von Zastrow, 2003). FLAG-tagged MOR0cK, MOR0cK R94,96K, MOR0cK R170,181K, MOR0cK R256,265,267K, MOR0cK R340K, and MOR K94,96R were generated by site-directed mutagenesis (QuikChange, Stratagene). Myc-tagged Smurf2 and GFP-tagged inactive mutant version of Smurf2 were generated using PCR and ligation into pcDNA3 and pEGFP-C1, respectively. GFP-tagged Smurf2 was made using PCR and ligation into pEGFP-C1. Epsin1 cDNA was obtained from Open Biosystems and subloned into pEGFP-C1. Epsin1 cDNA was obtained from Open Biosystems and subcloned into pEGFP-C1. GFP-Epsin1ΔUIM was generated using oligonucleotide-directed mutagenesis (QuikChange, Stratagene). Transfections were carried out using Lipofectamine 2000 or RNAi-max (Invitrogen) for cDNA or siRNA, respectively, according to manufacturer’s instructions. Stably-transfected cell lines expressing FLAG-tagged receptors were generated by selection for neomycin resistance with G418 (Geneticin; Invitrogen). Alexa 555-labelled siRNA duplexes against Smurf2 and siRNA duplexes against Epsin1 were obtained from Qiagen and siRNA duplexes against clathrin (CHC17) were ordered from Qiagen based on an established siRNA sequence (Vassilopoulos et al., 2009). Antibodies used were anti-Smurf2 (Santa Cruz Biotechnology), anti-ubiquitin (P4D1, Santa Cruz Biotechnology), anti-clathrin heavy chain (Santa Cruz Biotechnology), anti-Epsin1 (Santa Cruz Biotechnology, R-20 antibody), rabbit anti-FLAG (Sigma), anti-FLAG-M1 (Sigma),
and anti-HA-11 (Covance). Dyngo-4a was obtained from Abcam and used at a final concentration of 30μM.

TIR-FM Imaging

Cells were imaged in Opti-MEM I reduced serum media (UCSF Cell Culture Facility) at 37°C, maintained with a temperature-controlled stage (Bioscience Tools) and objective warmer (Bioptechs). Cells were imaged with an exposure time of 100ms and an EM gain of 300. Surface FLAG-tagged receptors were labeled with Alexa Fluor 488- or 647-conjugated M1 anti-FLAG antibody for visualization. To visualize endocytic events, cells were treated with 10M DADLE on stage. Bleaching controls were obtained by performing identical experiments in the absence of agonist. For dual imaging experiments, minimal bleed-through between channels was verified by imaging samples labeled only with single fluorophores. Representative live images shown were rendered using Adobe Photoshop software.

Immunoelectron microscopy of plasma membrane sheets

HEK 293 cells stably-expressing F-MOR or F-MOR0cK were grown on coverslips and incubated with 10μM DADLE for 2 minutes. Cells were then washed with cold PBS and placed on ice to prevent further receptor internalization. Cell surface receptors were detected by sequential incubation with 10μg/ml rabbit anti-FLAG IgG (Sigma-Aldrich, MO, USA) and protein A conjugated to 10nm gold particles, after which cells were washed in HEPES buffer (25 mM HEPES, 25 mM KCl, and 2.5 mM Mg acetate, pH 7.0). Plasma membrane sheets were then prepared using a previously described “rip-off” technique (Sanan and Anderson, 1991; Signoret et al., 2005). Briefly, cover slips were inverted on to formvar/carbon/poly-L-lysine coated electron microscopy grids and light pressure applied for 10 sec using a rubber cork. The cover slips were lifted away to rip open adhered cells and leave portions of the dorsal plasma
membrane attached to the grids. The material was briefly washed in HEPES buffer and fixed in 4% glutaraldehyde. Samples were post-fixed by sequential incubation in 1% osmium, 1% tannic acid and 1% uranyl acetate, and then air-dried.

Image Analysis

Image analysis was performed using ImageJ software (Wayne Rasband, National Institutes of Health, Bethesda, MD). For surface lifetime measurements, the time between the appearance and disappearance of clusters was measured as previously described (Puthenveedu and von Zastrow, 2006). Briefly, cluster appearance was identified as the frame where the cluster fluorescence increased above the background fluorescence of an adjacent point of the cell being analyzed. Disappearance of a cluster was determined as the frame where cluster fluorescence decreased to the background fluorescence of a neighboring area of the imaged cell, or when the cluster split off and the subsequent cluster decreased to background levels of fluorescence. Only clusters that clearly appeared and disappeared during image acquisition were included. For cluster intensity measurements, cells were chosen with similar fluorescence values, to ensure equal expression of receptor and clathrin. The mean intensity value of clusters immediately prior to endocytic scission and of an identically-sized background region of the cell at that same frame was quantified. Fluorescence values of clusters were then divided by those of background regions and expressed as “Fold over background” values. For change in intensity over time measurements, ROIs were drawn around individual cells, and the change in integrated intensity was measured and background-corrected. These values were normalized to the intensity of the cell immediately prior to agonist treatment and are represented as “% of initial fluorescence” values.

Detection of ubiquitination by Western blot analysis

Cells stably-expressing FLAG-tagged wildtype or mutant MORs were treated with agonist for
the indicated time points, lysed in 10mM Tris pH 7.4, 1% SDS, and 10mM iodoacetamide supplemented with a standard protease inhibitor mixture (Roche Applied Science), sonicated, and clarified by centrifugation as previously described (Hislop et al., 2011). Samples were incubated overnight with rabbit anti-FLAG antibody (Sigma) and later with protein A/G-agarose beads (Piece), then washed and incubated with SDS sample buffer (Invitrogen) supplemented with DTT. Western immunoblot analysis was performed using anti-HA-11 (Covance) or anti-ubiquitin (Santa Cruz Biotechnology). Blots were probed with anti-ubiquitin or anti-FLAG antibody to verify equal loading and receptor levels.

Automated CCP lifetime analysis

Cells were transiently-transfected with DsRed-tagged clathrin light chain and pCDNA 3.0, F-MOR K94,96R, or F-MOR0cK R94,96K and were treated with agonist while imaging using TIRF-M. Fluorescent particle detection and CCP lifetime tracking was performed on raw image sequences using a previously established Matlab package that is publicly available (Jaqaman et al., 2008; Loerke et al., 2009).

Statistical analysis

Quantitative measurements were averaged across multiple independent experiments, with the number of experiments indicated in the corresponding figure legends. Error bars represent the standard error of the mean quantified after compiling mean determinations across multiple experiments. The statistical significance of the measured differences between conditions were analyzed using the appropriate variations of one- or two-way ANOVA and post-test, specified in figure legends, calculated using Prism 4.0 software (GraphPad Software, Inc). The relative significance of each of the reported differences is indicated by the calculated p values listed in the figure legends and shown graphically in the figures.
Supplemental References

